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Moose + 
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PERL 11
 

5 + 6 = 11

perl11.org

Will Braswell, Ingy döt net, Reini Urban, 
Flavio Glock, Audrey Tang, Wendy + Liz, ...

ofun.pm
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PERL8.ORG
 

pugs in scala - moe
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perl11

simple
features

performance 
threads
sanity

future (?)
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Pluggable PERL5 (+6)

1  Parser -> AST

2  Compiler AST -> ops

3  VM - Execute ops

perl11
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PARSER

* YACC

* PEG / packrat

Marpa / ANTLR / 

PGE, parsec / ...

* Handwritten

Tuesday, August 13, 13



COMPILER

• AST -> ops linearization 

• Data Structures native vs library

• pluggable
bytecode vm, jit, c, native, jvm, js
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Data structures: native vs library tradeoff



VM (S)

• Compile & execute compiled code

• Bytecode

• JIT

• call-out/in native libs

• Debugging/profiling support
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  DESIGN PRINCIPLES
Frequent case         Not

• Math
• Conditionals
• Function calls
• Method dispatch
• Local variables
• Strings, build + compare
• Memory allocation

•

• New methods
• Creation of classes
• Deep scoping situations
• Change inheritance tree
• Global variables
• Eval
• Code allocation
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EFFICIENCY

• Raw

• JVM / CLR / LLVM

• ML, LISP, LUA, Go, Smalltalk, V8

• Smaller or slower VMs
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LEARN FROM THE GOOD

• 30MB static libs for LLVM just for a JIT?

• 1GB of ugly junk for a JVM/.NET with huge startup overhead? 
Safe but not practical

• Java’s main competitor : Lucent Inferno OS/Limbo/Dis VM

• All “good” VMs use their approach: GC, register based, three-
address coding, tagged small data, word-size ops

1236 loc, 86K
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JIT: 1236 loc, 115K



PARROT

• Right, catchy ideas
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PARROT

• Pluggable syntax

• Pluggable types

• Pluggable ops
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PARROT

• Pluggable syntax     - parse to common AST - easy

• Pluggable types      - like loadable C++ objects - framework 

• Pluggable ops         - same MOP framework (strict rules)
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PARROT

• once it was fast

• then it was de-optimized by non-technicians

• threads the best, but still not used

• dead end. suicidal tendencies
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POTION

• why the lucky stiff - 
famous ruby, eclectic, online suicide

• lua VM

• io / soda objmodel (smalltalk based)

• GC Cheney two-finger loop from QISH

• JIT self-written, very elegant 

Tuesday, August 13, 13



POTION

• common number interface

•
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POTION

• common number interface

• common hash/array interface

•

IV or NV, possibly auotmatic bignums

tables and tuples, interchangable (i.e. casting)
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- IV or NV, possibly automatic bignums with CPU-specific overflow checks
- tables and tuples interchangable (i.e. automatic casting)



POTION

• common number interface

• common hash/array interface

• everything is an object, every object is a word

•
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POTION

• common number interface

• common hash/array interface

• everything is an object, every object is a word

• every op is a word

Tuesday, August 13, 13



• looks good

• smells good

• makes fun
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play
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http://www.youtube.com/embed/47LtM830ocE
http://www.youtube.com/embed/47LtM830ocE
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PARSER
• PEG (enhanced to greg)

• Syntax tree of PNSource objects (max 3 nodes)
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COMPILER

•  
constant folding
if (value (0))       -> notjmp
elseif (value (1)) -> testjmp

if is no keyword, just a msg on a list 
with a block. i.e. method on a list with 
a block argument.
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COMPILER

• Control constructs are not parser special. 
Expanded by the compiler, like a macro

• Macros are compile-time parser extensions, no parser 
keywords

• Most perl-level ops are just methods on objects

• Compiler is extendable. 
--compile=c,opts loads and calls a external compile-c library
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VM

• Everything is an object, every object is a function (lambda)

• Every variable is a function, reacts to methods. (get, set, 
string, ...)

• Every block is a function, with lexical scoped variables and env

• Every call is a method call, even on nil or any 
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MOP
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VM
• JIT default, for intel and powerpc. arm not yet.

• Bytecode for unsupported CPUs, and for debugging

• Very simple. From lua ~50 ops. Do complicated stuff in 
methods, such as array, hash, io, syscalls methods.

• Each op consists of 3 numbers code,a,b in one word
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DATA
• Primitive obj (in one word) vs extended objects (vt, uniq, size, 

data).

• INT, BOOL, NIL as primitives, everything else is an object.

•     last bits 00 => foreign ptr or our obj (in our memory 
pages)

•     last bits 10 => bool (true or false)

•     last bit 1 => int (shifted by 1)

• Note: Different to dart, which has native int and shifts ptrs.
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CALLING CONVENTION

• Native C cdecl (32bit) and fastcall (64bit) layout

• Fast, and easy to interface, call-out and call-in. 
Fast function calls, no function call overhead (as in LISP)

• OO: Every potion method prepends 2 args.
interpreter, environment (a closure), self, optional args

only native, no stddecl, or foreign decl yet
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only native, no stddecl, or foreign decl yet



GC - CHENEY LOOP

• walks the stack, not the heap, use volatile

• copying (i.e. compacting), thread-friendly

• gc friendly data, chain of fwd ptr, 
also for thread-shared data - parrot “proxy”

• i.e. essentially a tri-color algo • just not stop-the-world and 
mark&sweep, uses no private stack. 
data knows about threads, proxies 
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• just not stop-the-world and mark&sweep, uses no private stack. 
data knows about threads, proxies 



GC 

• 3 memory areas:

•    protected segment (boot + core)

•    birth segment (fast generation, minor collections)

•    main segment (major collections)

• old segment 
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• old: swapped out with live segments during GC, mprotected



DESIGN DECISIONS

• support 90% but do not sacrifice for the rest

• gmake and c99 gcc/clang are everywhere

• no MSVC, bsd make, no strict C++-only compilers

• early testing with cross-compiling and threads
not afterwards
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FUNCTIONAL

• return copies, do not change arguments

• Str immutable, Buf bytebuffers for io

• no functions. pass a message to everything

• no statements. everything is an expression

• returns something and can be stacked

•  use destruction with care. 
I use LISP names: nreverse, delete
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•  use destruction with care.  I use LISP names: nreverse, nsort, delete

• returns something and can be stacked



MACROS

• With non-lisp languages

• parser macros
  in parse context, use existing parser syntax. <rule> ...

• compiler macros
  like a function call. evaluate not all args, only some. 
  body unquoting with `expr`

you can do everything: control constructs, like when, 
foreach, unless
start getting messy, where to be added into the parser 
state machine, fragile (messes with existing parser rules), 
and look bad because of the <rule> syntax.

limited to calls. but if your parser does nothing else then 
calls (like lisp does), its the perfect point to add it.
do not change the parser, just hook into the compiler.
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you can do everything: control constructs, like while, foreach, unless.
starts getting messy. where to be added into the parser state machine, fragile (messes with existing parser rules), and look 
bad because of the <rule> syntax. needs parser support, not pre-compiled.

limited to calls. but if your parser does nothing else then calls (like lisp does), its the perfect point to add it.
do not change the parser, just hook into the compiler.
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STATUS

• potion maintenance moved to perl11 org

• greg upstream commits: better error handling, diagnostics

• release potion 0.1 soon (await move, docs and one VM bug)

• more potion examples and features:  ffi, threads, UI bindings, 
shootout samples
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• GOAL

• Parser

• Compiler

• VM 

• Libs

TODO
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• GOAL: run 50% of p5 by Summer 2013, 90% by 2014.
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• GOAL: run 50% of p5 by Summer 2013, 90% by 2014.

• Parser : 30%, work on expr and calls. Can’t call functions yet, 
no p5-weirdness (proto, dynamic namespaces)

• Compiler : only to bytecode serialization, vm and jit. not to C 
or native yet. No macros.

• VM: arm jit, threads, callcc stability, ffi. 

• Libs

TODO
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TODO
• GOAL: run 50% of p5 by Summer 2013, 90% by 2014.

• Parser : 30%, work on expr and calls. Can’t call functions yet, 
no p5-weirdness (proto, dynamic namespaces)

• Compiler : only to bytecode serialization, vm and jit. not to C 
or native yet. No macros yet.

• VM: arm jit, threads, stabilize callcc, ffi. 

• Libs: aio ✓, buffile ✓, sprintf (20%), pcre (10%), bignum (20%) 
bindings, p5 compat.
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