
WELCOME TO PERL11

5 + 6 = 11

http://perl11.org/p2/

Tuesday, August 13, 13

http://perl11.org
http://perl11.org

Tuesday, August 13, 13

Tuesday, August 13, 13

Text

Stavanger 2012
Moose +
p5-mop

Workshop

Tuesday, August 13, 13

Preikestolen

Tuesday, August 13, 13

Austin 2012

Will Braswell Ingy döt net

Tuesday, August 13, 13

PERL 11

5 + 6 = 11

perl11.org

Will Braswell, Ingy döt net, Reini Urban,
Flavio Glock, Audrey Tang, Wendy + Liz, ...

ofun.pm
Tuesday, August 13, 13

http://perl11.org
http://perl11.org

Orlando 2013

Tuesday, August 13, 13

Tuesday, August 13, 13

PERL8.ORG

pugs in scala - moe

Tuesday, August 13, 13

Tuesday, August 13, 13

Tuesday, August 13, 13

Tuesday, August 13, 13

Tuesday, August 13, 13

Tuesday, August 13, 13

perl11

simple
features

performance
threads
sanity

future (?)

Tuesday, August 13, 13

Pluggable PERL5 (+6)

1 Parser -> AST

2 Compiler AST -> ops

3 VM - Execute ops

perl11

Tuesday, August 13, 13

PARSER

* YACC

* PEG / packrat

Marpa / ANTLR /

PGE, parsec / ...

* Handwritten

Tuesday, August 13, 13

COMPILER

• AST -> ops linearization

• Data Structures native vs library

• pluggable
bytecode vm, jit, c, native, jvm, js

Tuesday, August 13, 13

Data structures: native vs library tradeoff

VM (S)

• Compile & execute compiled code

• Bytecode

• JIT

• call-out/in native libs

• Debugging/profiling support

Tuesday, August 13, 13

 DESIGN PRINCIPLES
Frequent case Not

• Math
• Conditionals
• Function calls
• Method dispatch
• Local variables
• Strings, build + compare
• Memory allocation

•

• New methods
• Creation of classes
• Deep scoping situations
• Change inheritance tree
• Global variables
• Eval
• Code allocation

Tuesday, August 13, 13

EFFICIENCY

• Raw

• JVM / CLR / LLVM

• ML, LISP, LUA, Go, Smalltalk, V8

• Smaller or slower VMs

Tuesday, August 13, 13

LEARN FROM THE GOOD

• 30MB static libs for LLVM just for a JIT?

• 1GB of ugly junk for a JVM/.NET with huge startup overhead?
Safe but not practical

• Java’s main competitor : Lucent Inferno OS/Limbo/Dis VM

• All “good” VMs use their approach: GC, register based, three-
address coding, tagged small data, word-size ops

1236 loc, 86K

Tuesday, August 13, 13

JIT: 1236 loc, 115K

PARROT

• Right, catchy ideas

Tuesday, August 13, 13

PARROT

• Pluggable syntax

• Pluggable types

• Pluggable ops

Tuesday, August 13, 13

PARROT

• Pluggable syntax - parse to common AST - easy

• Pluggable types - like loadable C++ objects - framework

• Pluggable ops - same MOP framework (strict rules)

Tuesday, August 13, 13

PARROT

• once it was fast

• then it was de-optimized by non-technicians

• threads the best, but still not used

• dead end. suicidal tendencies

Tuesday, August 13, 13

POTION

• why the lucky stiff -
famous ruby, eclectic, online suicide

• lua VM

• io / soda objmodel (smalltalk based)

• GC Cheney two-finger loop from QISH

• JIT self-written, very elegant

Tuesday, August 13, 13

POTION

• common number interface

•

Tuesday, August 13, 13

POTION

• common number interface

• common hash/array interface

•

IV or NV, possibly auotmatic bignums

tables and tuples, interchangable (i.e. casting)

Tuesday, August 13, 13

- IV or NV, possibly automatic bignums with CPU-specific overflow checks
- tables and tuples interchangable (i.e. automatic casting)

POTION

• common number interface

• common hash/array interface

• everything is an object, every object is a word

•

Tuesday, August 13, 13

POTION

• common number interface

• common hash/array interface

• everything is an object, every object is a word

• every op is a word

Tuesday, August 13, 13

• looks good

• smells good

• makes fun

Tuesday, August 13, 13

Tuesday, August 13, 13

play

Tuesday, August 13, 13

http://www.youtube.com/embed/47LtM830ocE
http://www.youtube.com/embed/47LtM830ocE

Tuesday, August 13, 13

PARSER
• PEG (enhanced to greg)

• Syntax tree of PNSource objects (max 3 nodes)

Tuesday, August 13, 13

COMPILER

•
constant folding
if (value (0)) -> notjmp
elseif (value (1)) -> testjmp

if is no keyword, just a msg on a list
with a block. i.e. method on a list with
a block argument.

Tuesday, August 13, 13

COMPILER

• Control constructs are not parser special.
Expanded by the compiler, like a macro

• Macros are compile-time parser extensions, no parser
keywords

• Most perl-level ops are just methods on objects

• Compiler is extendable.
--compile=c,opts loads and calls a external compile-c library

Tuesday, August 13, 13

VM

• Everything is an object, every object is a function (lambda)

• Every variable is a function, reacts to methods. (get, set,
string, ...)

• Every block is a function, with lexical scoped variables and env

• Every call is a method call, even on nil or any

Tuesday, August 13, 13

MOP

Tuesday, August 13, 13

VM
• JIT default, for intel and powerpc. arm not yet.

• Bytecode for unsupported CPUs, and for debugging

• Very simple. From lua ~50 ops. Do complicated stuff in
methods, such as array, hash, io, syscalls methods.

• Each op consists of 3 numbers code,a,b in one word

Tuesday, August 13, 13

DATA
• Primitive obj (in one word) vs extended objects (vt, uniq, size,

data).

• INT, BOOL, NIL as primitives, everything else is an object.

• last bits 00 => foreign ptr or our obj (in our memory
pages)

• last bits 10 => bool (true or false)

• last bit 1 => int (shifted by 1)

• Note: Different to dart, which has native int and shifts ptrs.

Tuesday, August 13, 13

CALLING CONVENTION

• Native C cdecl (32bit) and fastcall (64bit) layout

• Fast, and easy to interface, call-out and call-in.
Fast function calls, no function call overhead (as in LISP)

• OO: Every potion method prepends 2 args.
interpreter, environment (a closure), self, optional args

only native, no stddecl, or foreign decl yet

Tuesday, August 13, 13

only native, no stddecl, or foreign decl yet

GC - CHENEY LOOP

• walks the stack, not the heap, use volatile

• copying (i.e. compacting), thread-friendly

• gc friendly data, chain of fwd ptr,
also for thread-shared data - parrot “proxy”

• i.e. essentially a tri-color algo • just not stop-the-world and
mark&sweep, uses no private stack.
data knows about threads, proxies

Tuesday, August 13, 13

• just not stop-the-world and mark&sweep, uses no private stack.
data knows about threads, proxies

GC

• 3 memory areas:

• protected segment (boot + core)

• birth segment (fast generation, minor collections)

• main segment (major collections)

• old segment

Tuesday, August 13, 13

• old: swapped out with live segments during GC, mprotected

DESIGN DECISIONS

• support 90% but do not sacrifice for the rest

• gmake and c99 gcc/clang are everywhere

• no MSVC, bsd make, no strict C++-only compilers

• early testing with cross-compiling and threads
not afterwards

Tuesday, August 13, 13

FUNCTIONAL

• return copies, do not change arguments

• Str immutable, Buf bytebuffers for io

• no functions. pass a message to everything

• no statements. everything is an expression

• returns something and can be stacked

• use destruction with care.
I use LISP names: nreverse, delete

Tuesday, August 13, 13

• use destruction with care. I use LISP names: nreverse, nsort, delete

• returns something and can be stacked

MACROS

• With non-lisp languages

• parser macros
 in parse context, use existing parser syntax. <rule> ...

• compiler macros
 like a function call. evaluate not all args, only some.
 body unquoting with `expr`

you can do everything: control constructs, like when,
foreach, unless
start getting messy, where to be added into the parser
state machine, fragile (messes with existing parser rules),
and look bad because of the <rule> syntax.

limited to calls. but if your parser does nothing else then
calls (like lisp does), its the perfect point to add it.
do not change the parser, just hook into the compiler.

Tuesday, August 13, 13

you can do everything: control constructs, like while, foreach, unless.
starts getting messy. where to be added into the parser state machine, fragile (messes with existing parser rules), and look
bad because of the <rule> syntax. needs parser support, not pre-compiled.

limited to calls. but if your parser does nothing else then calls (like lisp does), its the perfect point to add it.
do not change the parser, just hook into the compiler.

MACROS

Tuesday, August 13, 13

MACROS

Tuesday, August 13, 13

MACROS

Tuesday, August 13, 13

STATUS

• potion maintenance moved to perl11 org

• greg upstream commits: better error handling, diagnostics

• release potion 0.1 soon (await move, docs and one VM bug)

• more potion examples and features: ffi, threads, UI bindings,
shootout samples

Tuesday, August 13, 13

• GOAL

• Parser

• Compiler

• VM

• Libs

TODO

Tuesday, August 13, 13

• GOAL: run 50% of p5 by Summer 2013, 90% by 2014.

• Parser

• Compiler

• VM

• Libs

TODO

Tuesday, August 13, 13

• GOAL: run 50% of p5 by Summer 2013, 90% by 2014.

• Parser : 30%, work on expr and calls. Can’t call functions yet,
no p5-weirdness (proto, dynamic namespaces)

• Compiler

• VM

• Libs

TODO

Tuesday, August 13, 13

• GOAL: run 50% of p5 by Summer 2013, 90% by 2014.

• Parser : 30%, work on expr and calls. Can’t call functions yet,
no p5-weirdness (proto, dynamic namespaces)

• Compiler : only to bytecode serialization, vm and jit. not to C
or native yet. No macros.

• VM

• Libs

TODO

Tuesday, August 13, 13

• GOAL: run 50% of p5 by Summer 2013, 90% by 2014.

• Parser : 30%, work on expr and calls. Can’t call functions yet,
no p5-weirdness (proto, dynamic namespaces)

• Compiler : only to bytecode serialization, vm and jit. not to C
or native yet. No macros.

• VM: arm jit, threads, callcc stability, ffi.

• Libs

TODO

Tuesday, August 13, 13

TODO
• GOAL: run 50% of p5 by Summer 2013, 90% by 2014.

• Parser : 30%, work on expr and calls. Can’t call functions yet,
no p5-weirdness (proto, dynamic namespaces)

• Compiler : only to bytecode serialization, vm and jit. not to C
or native yet. No macros yet.

• VM: arm jit, threads, stabilize callcc, ffi.

• Libs: aio ✓, buffile ✓, sprintf (20%), pcre (10%), bignum (20%)
bindings, p5 compat.

Tuesday, August 13, 13

